What do i need to know to become a Web Application Penetration Tester?

Web Application Penetration Testing (WAPT), also known as ethical hacking or web app security testing, is a proactive approach to identifying and addressing security vulnerabilities in web applications. The primary goal of web application penetration testing is to assess the security of web applications by simulating real world cyber attacks. This process helps organizations identify and fix potential weaknesses before malicious attackers can exploit them.

 

Here’s an overview of what web application penetration testing involves:

 

Identifying Vulnerabilities

Penetration testers analyze web applications to discover potential security vulnerabilities. These vulnerabilities can include issues such as input validation errors, authentication and authorization flaws, insecure session management, and more.

 

Simulating Cyber Attacks

Testers simulate various types of cyber attacks that malicious actors might use to exploit vulnerabilities. This can include SQL injection, cross site scripting (XSS), cross site request forgery (CSRF), and other common web application attacks.

 

Assessing Security Controls

The testing process evaluates the effectiveness of security controls implemented in the web application, such as firewalls, intrusion detection and prevention systems, and encryption mechanisms.


Manual and Automated Testing

Both manual and automated testing techniques are employed. Manual testing involves human testers actively probing the application for vulnerabilities that automated tools might miss. Automated tools help scan the application quickly for known vulnerabilities.


Understanding Business Logic Flaws

Testers also examine the application’s business logic to identify any flaws that may not be apparent in automated scans. Understanding how the application processes data and handles transactions is essential for a thorough assessment.


Data Security Assessment

Assessing how the application handles sensitive data, such as user credentials and personal information, is a critical aspect of web application penetration testing. This includes checking for data encryption and secure storage practices.


Reporting and Remediation

After the testing phase, a detailed report is generated, outlining the identified vulnerabilities, their severity, and recommendations for remediation. This report guides developers and IT teams in addressing the security issues discovered during testing.


Compliance and Standards

Penetration testing is often conducted to ensure compliance with industry standards and regulations. For example, organizations handling financial transactions or personal data may be required to undergo regular security assessments.


Continuous Testing

Web application penetration testing is not a one-time activity. With the evolving threat landscape, organizations should conduct regular testing to ensure the ongoing security of their web applications. Continuous testing helps detect and address new vulnerabilities that may arise due to changes in the application or external factors.

 

Web application penetration testing plays a crucial role in maintaining the security and integrity of web applications, protecting sensitive data, and preventing unauthorized access. It is an integral part of a comprehensive security strategy for organizations that rely on web applications to conduct business.

 

Are you passionate about cybersecurity and finding vulnerabilities on web applications? Level up your bug hunting skills with our CBBH training

SHARE:

Syllabus:

Intro to GCP

  • GCP Hierarchy
  • Google Workspace
  • gcloud config
  • Basic Hacking Techniques

Exploitation of GCP Services

  • IAM
  • KMS
  • Secrets 
  • Storage
  • Compute Instances & VPC
  • Cloud Functions
  • CloudSQL
  • Pub/Sub
  • App Engine
  • Google APIs
  • Cloud Shell

Methodologies

  • White box

Security Services

  • GCP Logging & Monitoring

Syllabus:

Intro to AWS

  • AWS Organization
  • AWS Principals
  • Basic Hacking Techniques

Exploitation of AWS Services

  • IAM
  • STS
  • KMS
  • Secrets Manager
  • S3
  • EC2 & VPC
  • Lambda
  • RDS
  • SQS
  • SNS

Methologies

  • White box

Common Detection Mechanisms

  • CloudTrail

Syllabus:

Azure Basics

  • Azure Organization
  • Entra ID
  • Azure Tokens & APIs
  • Basic Enumeration Tools

 

Exploitation of Azure Services

  • Entra ID IAM
  • Azure IAM
  • Azure Applications
  • Azure Key Vault
  • Azure Virtual Machine & Networking
  • Storage Accounts
  • Azure File Share
  • Azure Table Storage
  • Azure SQL Database
  • Azure MySQL & PostgreSQL
  • Azure CosmosDB
  • Azure App Service
  • Basic Azure Research Technique
  • Azure Function Apps
  • Static Web Apps
  • Azure Container Registry
  • Azure Container
  • Instances, Apps & Jobs
  • Azure Queue
  • Azure Service Bus
  • Azure Automation Account
  • Azure Logic Apps
  • Azure Cloud Shell
  • Azure Virtual Desktop

 

Methologies

  • White box
  • Black box
  • Pivoting between Entra ID & AD

 

Common Detection Mechanisms

  • Azure & Entra ID Logging & Monitoring
  • Microsoft Sentinel
  • Microsoft Defender for Cloud & Microsoft Defender EASM

Fundamentals and Setup

  1. Overview of Android’s architecture and ecosystem dynamics.
  2. Exploration of security features native to Android using Java, Kotlin, C++, and Rust.
  3. Mobile Application Threat Model
    a) Differences between mobile and web application threat models.
    b) Applying threat modeling techniques specifically to mobile applications.
    c) Case studies highlighting potential threats and vulnerabilities.
    d) How do we secure and test cross platform apps (e.g. ReactNative, Xamarin, etc).
  4. Introduction to industry mobile security standards
    a) OWASP Mobile Application Security (MAS) project
    b) Effective usage of the Mobile Application Security Verification Standard (MASVS).
    c) Effective usage of the Mobile Security Testing Guide (MSTG).
    d) Overview of the OWASP top 10 for mobile.
  5. Setting up and preparing a mobile security testing lab
    a) Configuration of industry-standard tools and guidance on their appropriate use.
    b) Setup of virtual mobile devices using Corellium, including its advantages.
    c) Introductory exercises to familiarize with the tools.
  6. Secure Coding Overview
    a) Exercises to identify vulnerabilities in code examples
    b) Discussion of the appropriate mechanisms for remediation
    c) Practical session on remediation and re-testing the app
  7. Secure storage
    a) Overview of application storage mechanisms.
    b) Introduction to cryptographic storage solutions on Android.

Advanced Techniques and Practical Application

  • Mobile penetration testing methodology
    a) Methodologies used in real-world scenarios with practical tips and tricks.
  • Identifying issues with backend APIs
    a) Examination of client-side trust issues.
    b) Analysis of insecure communications including certificate validation and pinning.
  • Cryptography in Android apps
    a) Utilization of Android’s Crypto APIs.
    b) Implementation of native cryptography using libraries like libnacl and OpenSSL.
    c) Management of cryptographic keys.
  • Authentication and Authorization
    a) Testing client-side authentication mechanisms, including secure usage of biometrics.
    b) Strategies to detect and bypass authentication flaws.
    c) Security measures for API authentication.
  • Android IPC
    a) Detailed exploration of Intents, deep links, Binders/services, and broadcast receivers.
  • Webviews
    a) Identifying and resolving common security issues in Android Webview configurations.
  • Software Composition Analysis (SBOM)
    a) Techniques to determine the components of an Android app.
    b) Identifying known vulnerabilities within these components.
  • Mobile Device Management (MDM)
    a) Introduction to Mobile Device Management: definition, core features, and its role in enhancing organizational security.
    b) Discussion on the benefits and practical applications of MDM in controlling and securing mobile devices across an enterprise.
  • Mobile Application Management (MAM)
    a) Overview of Mobile Application Management: what it entails and its significance in enterprise environments.
    b) Exploration of how MAM contributes to managing and securing applications specifically, detailing its utility for enterprise security strategies.

Advanced Techniques and Practical Application

  • Mobile penetration testing methodology
    a) Methodologies used in real-world scenarios with practical tips and tricks.
  • Identifying issues with backend APIs
    a) Examination of client-side trust issues.
    b) Analysis of insecure communications including App Transport Security issues & certificate pinning.
  • Cryptography in IOS apps
    a) Utilization of iOS’s CryptoKit & CommonCrypto APIs.
    b) Implementation of native cryptography using libraries like libnacl and OpenSSL.
    c) Management of cryptographic keys and leveraging the secure enclave.
  • Authentication and Authorization
    a) Testing client-side authentication mechanisms, including secure usage of Local Authentication (biometrics).
    b) Strategies to detect and bypass authentication flaws.
    c) Security measures for API authentication.
    d) Using Device Check and App Attest
  • iOS IPC
    a) Detailed exploration of URL schemes, deep (universal) links, and extensions.
  • Webviews
    a) Identifying and resolving common security issues in iOS Webview configurations.
  • Software Composition Analysis (SBOM)
    a) Techniques to determine the components of an iOS app.
    b) Identifying known vulnerabilities within these components.
  • Implementing App Integrity
    a) What to look for
    b) How to implement
  • Mobile Device Management (MDM)
    a) Introduction to Mobile Device Management: definition, core features, and its role in enhancing organizational security.
    b) Discussion on the benefits and practical applications of MDM in controlling and securing mobile devices across an enterprise.
  • Mobile Application Management (MAM)
    a) Overview of Mobile Application Management: what it entails and its significance in enterprise environments.
    b) Exploration of how MAM contributes to managing and securing applications specifically, detailing its utility for enterprise security strategies.

Fundamentals & Setup

  1. Overview of iOS’s architecture and ecosystem dynamics.
  2. Exploration of security features native to to iOS using Objective-C, Swift, and C(++).
  3. Mobile Application Threat Model
    a) Differences between mobile and web application threat models.
    b) Applying threat modeling techniques specifically to mobile applications.
    c) Case studies highlighting potential threats and vulnerabilities.
    d) How do we secure and test cross platform apps (e.g. ReactNative, Xamarin, etc).
  4. Introduction to industry mobile security standards
    a) OWASP Mobile Application Security (MAS) project
    b) Effective usage of the Mobile Application Security Verification Standard (MASVS).
    c) Effective usage of the Mobile Security Testing Guide (MSTG).
    d) Overview of the OWASP top 10 for mobile.
  5. Setting up and preparing a mobile security testing lab
    a) Configuration of industry-standard tools and guidance on their appropriate use.
    b) Setup of virtual mobile devices using Corellium, including its advantages.
    c) Introductory exercises to familiarize with the tools.
  6. Secure Coding Overview
    a) Exercises to identify vulnerabilities in iOS code examples
    b) Discussion of the appropriate mechanisms for remediation
    c) Practical session on remediation and re-testing the app
  7. Secure storage
    a) Overview of application storage mechanisms.
    b) Introduction to cryptographic storage solutions on iOS.